|
1 /** |
|
2 * Java RTP Library (jlibrtp) |
|
3 * Copyright (C) 2006 Arne Kepp |
|
4 * |
|
5 * This library is free software; you can redistribute it and/or |
|
6 * modify it under the terms of the GNU Lesser General Public |
|
7 * License as published by the Free Software Foundation; either |
|
8 * version 2.1 of the License, or (at your option) any later version. |
|
9 * |
|
10 * This library is distributed in the hope that it will be useful, |
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 * Lesser General Public License for more details. |
|
14 * |
|
15 * You should have received a copy of the GNU Lesser General Public |
|
16 * License along with this library; if not, write to the Free Software |
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
18 */ |
|
19 package jlibrtp; |
|
20 |
|
21 import org.sipdroid.net.tools.DatagramPool; |
|
22 import org.sipdroid.net.tools.PktBufNodePool; |
|
23 import org.sipdroid.net.tools.RtpPktPool; |
|
24 |
|
25 /** |
|
26 * Data structure to hold a complete frame if frame reconstruction is enabled, |
|
27 * or the data from an individual packet if it is not |
|
28 * |
|
29 * It also contains most of the data from the individual packets that it is |
|
30 * based on. |
|
31 * |
|
32 * @author Arne Kepp |
|
33 */ |
|
34 public class DataFrame { |
|
35 /** The share RTP timestamp */ |
|
36 private long rtpTimestamp; |
|
37 /** The calculated UNIX timestamp, guessed after 2 Sender Reports */ |
|
38 private long timestamp = -1; |
|
39 /** the SSRC from which this frame originated */ |
|
40 private long SSRC; |
|
41 /** contributing CSRCs, only read from the first packet */ |
|
42 private long[] CSRCs; |
|
43 /** RTP payload type */ |
|
44 private int payloadType; |
|
45 /** The marks on individual packets, ordered */ |
|
46 //private boolean[] marks; |
|
47 /** Whether any packets were marked or not */ |
|
48 private boolean anyMarked = false; |
|
49 /** Whether the frame contains the expected number of packets */ |
|
50 private int isComplete = 0; |
|
51 // private int dataLength; |
|
52 /** The data from the individual packets, ordered */ |
|
53 //private byte[][] data; |
|
54 /** The sequence numbers of the individual packets, ordered */ |
|
55 //private int[] seqNum; |
|
56 /** The total amount of data bytes in this frame */ |
|
57 private int totalLength = 0; |
|
58 /** The last sequence number in this frame */ |
|
59 protected int lastSeqNum; |
|
60 /** The first sequence number in this frame */ |
|
61 protected int firstSeqNum; |
|
62 /** The number of packets expected for a complete frame */ |
|
63 protected int noPkts; |
|
64 private RtpPkt[] pkts = new RtpPkt[5]; |
|
65 |
|
66 /** |
|
67 * The usual way to construct a frame is by giving it a PktBufNode, which |
|
68 * contains links to all the other pkts that make it up. |
|
69 */ |
|
70 protected DataFrame(PktBufNode aBufNode, Participant p, int noPkts) { |
|
71 initDataFrame(aBufNode, p, noPkts); |
|
72 } |
|
73 |
|
74 protected void initDataFrame(PktBufNode aBufNode, Participant p, int noPkts) { |
|
75 if (RTPSession.rtpDebugLevel > 6) { |
|
76 System.out.println("-> DataFrame(PktBufNode, noPkts = " + noPkts |
|
77 + ")"); |
|
78 } |
|
79 this.noPkts = noPkts; |
|
80 RtpPkt aPkt = aBufNode.pkt; |
|
81 int pktCount = aBufNode.pktCount; |
|
82 firstSeqNum = aBufNode.pktCount; |
|
83 PktBufNode tempNode; |
|
84 |
|
85 // All this data should be shared, so we just get it from the first one |
|
86 this.rtpTimestamp = aBufNode.timeStamp; |
|
87 SSRC = aPkt.getSsrc(); |
|
88 CSRCs = aPkt.getCsrcArray(); |
|
89 |
|
90 // Check whether we can compute an NTPish timestamp? Requires two SR |
|
91 // reports |
|
92 if (p.ntpGradient > 0) { |
|
93 // System.out.print(Long.toString(p.ntpOffset)+" " |
|
94 timestamp = p.ntpOffset |
|
95 + (long) (p.ntpGradient * (double) (this.rtpTimestamp - p.lastSRRtpTs)); |
|
96 } |
|
97 |
|
98 // Make data the right length |
|
99 int payloadLength = aPkt.getPayloadLength(); |
|
100 //seqNum = new int[aBufNode.pktCount]; |
|
101 //marks = new boolean[aBufNode.pktCount]; |
|
102 if (pktCount > 5) { |
|
103 System.out.println("PKT COUNT TOO HIGH " + pktCount); |
|
104 } |
|
105 // Concatenate the data of the packets |
|
106 int i; |
|
107 for (i = 0; i < pktCount; i++) { |
|
108 aPkt = aBufNode.pkt; |
|
109 pkts[i] = aPkt; |
|
110 // System.out.println("i " + i + " seqNum[i] " + seqNum[i] + |
|
111 // " aBufNode" + aBufNode); |
|
112 //seqNum[i] = aBufNode.seqNum; |
|
113 if (aBufNode.pkt.isMarked()) |
|
114 anyMarked = true; |
|
115 |
|
116 // Get next node |
|
117 tempNode = aBufNode; |
|
118 aBufNode = aBufNode.nextFrameNode; |
|
119 PktBufNodePool.getInstance().returnBufNode(tempNode); |
|
120 lastSeqNum = aPkt.getSeqNumber(); |
|
121 } |
|
122 |
|
123 if (noPkts > 0) { |
|
124 int seqDiff = firstSeqNum - lastSeqNum; |
|
125 if (seqDiff < 0) |
|
126 seqDiff = (Integer.MAX_VALUE - firstSeqNum) + lastSeqNum; |
|
127 if (seqDiff == pktCount && pktCount == noPkts) |
|
128 isComplete = 1; |
|
129 } else { |
|
130 isComplete = -1; |
|
131 } |
|
132 |
|
133 if (RTPSession.rtpDebugLevel > 6) { |
|
134 System.out.println("<- DataFrame(PktBufNode, noPkt), data length: " |
|
135 + pkts.length); |
|
136 } |
|
137 } |
|
138 |
|
139 public DataFrame(){ |
|
140 } |
|
141 |
|
142 /** |
|
143 * Returns a two dimensial array where the first dimension represents |
|
144 * individual packets, from which the frame is made up, in order of |
|
145 * increasing sequence number. These indeces can be matched to the sequence |
|
146 * numbers returned by sequenceNumbers(). |
|
147 * |
|
148 * @return 2-dim array with raw data from packets |
|
149 */ |
|
150 /*public byte[][] getData() { |
|
151 return this.data; |
|
152 }*/ |
|
153 |
|
154 public RtpPkt[] getPkt(){ |
|
155 return this.pkts ; |
|
156 } |
|
157 |
|
158 /** |
|
159 * Returns a concatenated version of the data from getData() It ignores |
|
160 * missing sequence numbers, but then isComplete() will return false |
|
161 * provided that RTPAppIntf.frameSize() provides a non-negative number for |
|
162 * this payload type. |
|
163 * |
|
164 * @return byte[] with all the data concatenated |
|
165 */ |
|
166 /*public byte[] getConcatenatedData() { |
|
167 if (this.noPkts < 2) { |
|
168 byte[] ret = new byte[this.totalLength]; |
|
169 int pos = 0; |
|
170 |
|
171 for (int i = 0; i < data.length; i++) { |
|
172 int length = data[i].length; |
|
173 |
|
174 // Last packet may be shorter |
|
175 if (pos + length > totalLength) |
|
176 length = totalLength - pos; |
|
177 |
|
178 System.arraycopy(data[i], 0, ret, pos, length); |
|
179 pos += data[i].length; |
|
180 } |
|
181 return ret; |
|
182 } else { |
|
183 return data[0]; |
|
184 } |
|
185 }*/ |
|
186 |
|
187 /** |
|
188 * If two SR packet have been received jlibrtp will attempt to calculate the |
|
189 * local UNIX timestamp (in milliseconds) of all packets received. |
|
190 * |
|
191 * This value should ideally correspond to the local time when the SSRC sent |
|
192 * the packet. Note that the source may not be reliable. |
|
193 * |
|
194 * Returns -1 if less than two SRs have been received |
|
195 * |
|
196 * @return the UNIX timestamp, similar to System.currentTimeMillis() or -1; |
|
197 */ |
|
198 public long timestamp() { |
|
199 return this.timestamp; |
|
200 |
|
201 } |
|
202 |
|
203 /** |
|
204 * Returns the RTP timestamp of all the packets in the frame. |
|
205 * |
|
206 * @return unmodified RTP timestamp |
|
207 */ |
|
208 public long rtpTimestamp() { |
|
209 return this.rtpTimestamp; |
|
210 } |
|
211 |
|
212 /** |
|
213 * Returns the payload type of the packets |
|
214 * |
|
215 * @return the payload type of the packets |
|
216 */ |
|
217 public int payloadType() { |
|
218 return this.payloadType; |
|
219 } |
|
220 |
|
221 /** |
|
222 * Returns an array whose values, for the same index, correpond to the |
|
223 * sequence number of the packet from which the data came. |
|
224 * |
|
225 * This information can be valuable in conjunction with getData(), to |
|
226 * identify what parts of a frame are missing. |
|
227 * |
|
228 * @return array with sequence numbers |
|
229 */ |
|
230 /*public int[] sequenceNumbers() { |
|
231 return seqNum; |
|
232 }*/ |
|
233 |
|
234 /** |
|
235 * Returns an array whose values, for the same index, correpond to whether |
|
236 * the data was marked or not. |
|
237 * |
|
238 * This information can be valuable in conjunction with getData(). |
|
239 * |
|
240 * @return array of booleans |
|
241 */ |
|
242 /*public boolean[] marks() { |
|
243 return this.marks; |
|
244 }*/ |
|
245 |
|
246 /** |
|
247 * Returns true if any packet in the frame was marked. |
|
248 * |
|
249 * This function should be used if all your frames fit into single packets. |
|
250 * |
|
251 * @return true if any packet was marked, false otherwise |
|
252 */ |
|
253 public boolean marked() { |
|
254 return this.anyMarked; |
|
255 } |
|
256 |
|
257 /** |
|
258 * The SSRC associated with this frame. |
|
259 * |
|
260 * @return the ssrc that created this frame |
|
261 */ |
|
262 public long ssrc() { |
|
263 return this.SSRC; |
|
264 } |
|
265 |
|
266 /** |
|
267 * The SSRCs that contributed to this frame |
|
268 * |
|
269 * @return an array of contributing SSRCs, or null |
|
270 */ |
|
271 public long[] csrcs() { |
|
272 return this.CSRCs; |
|
273 } |
|
274 |
|
275 /** |
|
276 * Checks whether the difference in sequence numbers corresponds to the |
|
277 * number of packets received for the current timestamp, and whether this |
|
278 * value corresponds to the expected number of packets. |
|
279 * |
|
280 * @return true if the right number of packets make up the frame |
|
281 */ |
|
282 public int complete() { |
|
283 return this.isComplete; |
|
284 } |
|
285 |
|
286 public void release() { |
|
287 for(RtpPkt pkt : this.pkts) { |
|
288 if (pkt != null) { |
|
289 if (pkt.getDatagramPacket() != null) |
|
290 DatagramPool.getInstance().returnPacket(pkt.getDatagramPacket()); |
|
291 RtpPktPool.getInstance().returnPkt(pkt); |
|
292 } |
|
293 } |
|
294 } |
|
295 } |