jni/gsm/short_term.c
changeset 823 2036ebfaccda
equal deleted inserted replaced
536:537ddd8aa407 823:2036ebfaccda
       
     1 /*
       
     2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
       
     3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
       
     4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
       
     5  */
       
     6 
       
     7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
       
     8 
       
     9 #include <stdio.h>
       
    10 #include <assert.h>
       
    11 
       
    12 #include "private.h"
       
    13 
       
    14 #include "gsm.h"
       
    15 #include "proto.h"
       
    16 
       
    17 /*
       
    18  *  SHORT TERM ANALYSIS FILTERING SECTION
       
    19  */
       
    20 
       
    21 /* 4.2.8 */
       
    22 
       
    23 static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
       
    24 	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/
       
    25 	word	* LARpp)	/* out: decoded ..			*/
       
    26 {
       
    27 	register word	temp1 /* , temp2 */;
       
    28 	register long	ltmp;	/* for GSM_ADD */
       
    29 
       
    30 	/*  This procedure requires for efficient implementation
       
    31 	 *  two tables.
       
    32  	 *
       
    33 	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
       
    34 	 *  MIC[1..8]  = minimum value of the LARc[1..8]
       
    35 	 */
       
    36 
       
    37 	/*  Compute the LARpp[1..8]
       
    38 	 */
       
    39 
       
    40 	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
       
    41 	 *
       
    42 	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;
       
    43 	 *		temp2  = *B << 1;
       
    44 	 *		temp1  = GSM_SUB( temp1, temp2 );
       
    45 	 *
       
    46 	 *		assert(*INVA != MIN_WORD);
       
    47 	 *
       
    48 	 *		temp1  = GSM_MULT_R( *INVA, temp1 );
       
    49 	 *		*LARpp = GSM_ADD( temp1, temp1 );
       
    50 	 *	}
       
    51 	 */
       
    52 
       
    53 #undef	STEP
       
    54 #define	STEP( B, MIC, INVA )	\
       
    55 		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\
       
    56 		temp1    = GSM_SUB( temp1, B << 1 );		\
       
    57 		temp1    = GSM_MULT_R( INVA, temp1 );		\
       
    58 		*LARpp++ = GSM_ADD( temp1, temp1 );
       
    59 
       
    60 	STEP(      0,  -32,  13107 );
       
    61 	STEP(      0,  -32,  13107 );
       
    62 	STEP(   2048,  -16,  13107 );
       
    63 	STEP(  -2560,  -16,  13107 );
       
    64 
       
    65 	STEP(     94,   -8,  19223 );
       
    66 	STEP(  -1792,   -8,  17476 );
       
    67 	STEP(   -341,   -4,  31454 );
       
    68 	STEP(  -1144,   -4,  29708 );
       
    69 
       
    70 	/* NOTE: the addition of *MIC is used to restore
       
    71 	 * 	 the sign of *LARc.
       
    72 	 */
       
    73 }
       
    74 
       
    75 /* 4.2.9 */
       
    76 /* Computation of the quantized reflection coefficients 
       
    77  */
       
    78 
       
    79 /* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8]
       
    80  */
       
    81 
       
    82 /*
       
    83  *  Within each frame of 160 analyzed speech samples the short term
       
    84  *  analysis and synthesis filters operate with four different sets of
       
    85  *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
       
    86  *  and the actual set of decoded LARs (LARpp(j))
       
    87  *
       
    88  * (Initial value: LARpp(j-1)[1..8] = 0.)
       
    89  */
       
    90 
       
    91 static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
       
    92 	register word * LARpp_j_1,
       
    93 	register word * LARpp_j,
       
    94 	register word * LARp)
       
    95 {
       
    96 	register int 	i;
       
    97 	register longword ltmp;
       
    98 
       
    99 	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
       
   100 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
       
   101 		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));
       
   102 	}
       
   103 }
       
   104 
       
   105 static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
       
   106 	register word * LARpp_j_1,
       
   107 	register word * LARpp_j,
       
   108 	register word * LARp)
       
   109 {
       
   110 	register int i;
       
   111 	register longword ltmp;
       
   112 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
       
   113 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
       
   114 	}
       
   115 }
       
   116 
       
   117 static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
       
   118 	register word * LARpp_j_1,
       
   119 	register word * LARpp_j,
       
   120 	register word * LARp)
       
   121 {
       
   122 	register int i;
       
   123 	register longword ltmp;
       
   124 
       
   125 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
       
   126 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
       
   127 		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
       
   128 	}
       
   129 }
       
   130 
       
   131 
       
   132 static void Coefficients_40_159 P2((LARpp_j, LARp),
       
   133 	register word * LARpp_j,
       
   134 	register word * LARp)
       
   135 {
       
   136 	register int i;
       
   137 
       
   138 	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
       
   139 		*LARp = *LARpp_j;
       
   140 }
       
   141 
       
   142 /* 4.2.9.2 */
       
   143 
       
   144 static void LARp_to_rp P1((LARp),
       
   145 	register word * LARp)	/* [0..7] IN/OUT  */
       
   146 /*
       
   147  *  The input of this procedure is the interpolated LARp[0..7] array.
       
   148  *  The reflection coefficients, rp[i], are used in the analysis
       
   149  *  filter and in the synthesis filter.
       
   150  */
       
   151 {
       
   152 	register int 		i;
       
   153 	register word		temp;
       
   154 	register longword	ltmp;
       
   155 
       
   156 	for (i = 1; i <= 8; i++, LARp++) {
       
   157 
       
   158 		/* temp = GSM_ABS( *LARp );
       
   159 	         *
       
   160 		 * if (temp < 11059) temp <<= 1;
       
   161 		 * else if (temp < 20070) temp += 11059;
       
   162 		 * else temp = GSM_ADD( temp >> 2, 26112 );
       
   163 		 *
       
   164 		 * *LARp = *LARp < 0 ? -temp : temp;
       
   165 		 */
       
   166 
       
   167 		if (*LARp < 0) {
       
   168 			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
       
   169 			*LARp = - ((temp < 11059) ? temp << 1
       
   170 				: ((temp < 20070) ? temp + 11059
       
   171 				:  GSM_ADD( temp >> 2, 26112 )));
       
   172 		} else {
       
   173 			temp  = *LARp;
       
   174 			*LARp =    (temp < 11059) ? temp << 1
       
   175 				: ((temp < 20070) ? temp + 11059
       
   176 				:  GSM_ADD( temp >> 2, 26112 ));
       
   177 		}
       
   178 	}
       
   179 }
       
   180 
       
   181 
       
   182 /* 4.2.10 */
       
   183 static void Short_term_analysis_filtering P4((S,rp,k_n,s),
       
   184 	struct gsm_state * S,
       
   185 	register word	* rp,	/* [0..7]	IN	*/
       
   186 	register int 	k_n, 	/*   k_end - k_start	*/
       
   187 	register word	* s	/* [0..n-1]	IN/OUT	*/
       
   188 )
       
   189 /*
       
   190  *  This procedure computes the short term residual signal d[..] to be fed
       
   191  *  to the RPE-LTP loop from the s[..] signal and from the local rp[..]
       
   192  *  array (quantized reflection coefficients).  As the call of this
       
   193  *  procedure can be done in many ways (see the interpolation of the LAR
       
   194  *  coefficient), it is assumed that the computation begins with index
       
   195  *  k_start (for arrays d[..] and s[..]) and stops with index k_end
       
   196  *  (k_start and k_end are defined in 4.2.9.1).  This procedure also
       
   197  *  needs to keep the array u[0..7] in memory for each call.
       
   198  */
       
   199 {
       
   200 	register word		* u = S->u;
       
   201 	register int		i;
       
   202 	register word		di, zzz, ui, sav, rpi;
       
   203 	register longword 	ltmp;
       
   204 
       
   205 	for (; k_n--; s++) {
       
   206 
       
   207 		di = sav = *s;
       
   208 
       
   209 		for (i = 0; i < 8; i++) {		/* YYY */
       
   210 
       
   211 			ui    = u[i];
       
   212 			rpi   = rp[i];
       
   213 			u[i]  = sav;
       
   214 
       
   215 			zzz   = GSM_MULT_R(rpi, di);
       
   216 			sav   = GSM_ADD(   ui,  zzz);
       
   217 
       
   218 			zzz   = GSM_MULT_R(rpi, ui);
       
   219 			di    = GSM_ADD(   di,  zzz );
       
   220 		}
       
   221 
       
   222 		*s = di;
       
   223 	}
       
   224 }
       
   225 
       
   226 #if defined(USE_FLOAT_MUL) && defined(FAST)
       
   227 
       
   228 static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
       
   229 	struct gsm_state * S,
       
   230 	register word	* rp,	/* [0..7]	IN	*/
       
   231 	register int 	k_n, 	/*   k_end - k_start	*/
       
   232 	register word	* s	/* [0..n-1]	IN/OUT	*/
       
   233 )
       
   234 {
       
   235 	register word		* u = S->u;
       
   236 	register int		i;
       
   237 
       
   238 	float 	  uf[8],
       
   239 		 rpf[8];
       
   240 
       
   241 	register float scalef = 3.0517578125e-5;
       
   242 	register float		sav, di, temp;
       
   243 
       
   244 	for (i = 0; i < 8; ++i) {
       
   245 		uf[i]  = u[i];
       
   246 		rpf[i] = rp[i] * scalef;
       
   247 	}
       
   248 	for (; k_n--; s++) {
       
   249 		sav = di = *s;
       
   250 		for (i = 0; i < 8; ++i) {
       
   251 			register float rpfi = rpf[i];
       
   252 			register float ufi  = uf[i];
       
   253 
       
   254 			uf[i] = sav;
       
   255 			temp  = rpfi * di + ufi;
       
   256 			di   += rpfi * ufi;
       
   257 			sav   = temp;
       
   258 		}
       
   259 		*s = di;
       
   260 	}
       
   261 	for (i = 0; i < 8; ++i) u[i] = uf[i];
       
   262 }
       
   263 #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
       
   264 
       
   265 static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
       
   266 	struct gsm_state * S,
       
   267 	register word	* rrp,	/* [0..7]	IN	*/
       
   268 	register int	k,	/* k_end - k_start	*/
       
   269 	register word	* wt,	/* [0..k-1]	IN	*/
       
   270 	register word	* sr	/* [0..k-1]	OUT	*/
       
   271 )
       
   272 {
       
   273 	register word		* v = S->v;
       
   274 	register int		i;
       
   275 	register word		sri, tmp1, tmp2;
       
   276 	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */
       
   277 
       
   278 	while (k--) {
       
   279 		sri = *wt++;
       
   280 		for (i = 8; i--;) {
       
   281 
       
   282 			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
       
   283 			 */
       
   284 			tmp1 = rrp[i];
       
   285 			tmp2 = v[i];
       
   286 			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
       
   287 				? MAX_WORD
       
   288 				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
       
   289 					     + 16384) >> 15)) ;
       
   290 
       
   291 			sri  = GSM_SUB( sri, tmp2 );
       
   292 
       
   293 			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
       
   294 			 */
       
   295 			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD
       
   296 				? MAX_WORD
       
   297 				: 0x0FFFF & (( (longword)tmp1 * (longword)sri
       
   298 					     + 16384) >> 15)) ;
       
   299 
       
   300 			v[i+1] = GSM_ADD( v[i], tmp1);
       
   301 		}
       
   302 		*sr++ = v[0] = sri;
       
   303 	}
       
   304 }
       
   305 
       
   306 
       
   307 #if defined(FAST) && defined(USE_FLOAT_MUL)
       
   308 
       
   309 static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
       
   310 	struct gsm_state * S,
       
   311 	register word	* rrp,	/* [0..7]	IN	*/
       
   312 	register int	k,	/* k_end - k_start	*/
       
   313 	register word	* wt,	/* [0..k-1]	IN	*/
       
   314 	register word	* sr	/* [0..k-1]	OUT	*/
       
   315 )
       
   316 {
       
   317 	register word		* v = S->v;
       
   318 	register int		i;
       
   319 
       
   320 	float va[9], rrpa[8];
       
   321 	register float scalef = 3.0517578125e-5, temp;
       
   322 
       
   323 	for (i = 0; i < 8; ++i) {
       
   324 		va[i]   = v[i];
       
   325 		rrpa[i] = (float)rrp[i] * scalef;
       
   326 	}
       
   327 	while (k--) {
       
   328 		register float sri = *wt++;
       
   329 		for (i = 8; i--;) {
       
   330 			sri -= rrpa[i] * va[i];
       
   331 			if     (sri < -32768.) sri = -32768.;
       
   332 			else if (sri > 32767.) sri =  32767.;
       
   333 
       
   334 			temp = va[i] + rrpa[i] * sri;
       
   335 			if     (temp < -32768.) temp = -32768.;
       
   336 			else if (temp > 32767.) temp =  32767.;
       
   337 			va[i+1] = temp;
       
   338 		}
       
   339 		*sr++ = va[0] = sri;
       
   340 	}
       
   341 	for (i = 0; i < 9; ++i) v[i] = va[i];
       
   342 }
       
   343 
       
   344 #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
       
   345 
       
   346 void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
       
   347 
       
   348 	struct gsm_state * S,
       
   349 
       
   350 	word	* LARc,		/* coded log area ratio [0..7]  IN	*/
       
   351 	word	* s		/* signal [0..159]		IN/OUT	*/
       
   352 )
       
   353 {
       
   354 	word		* LARpp_j	= S->LARpp[ S->j      ];
       
   355 	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];
       
   356 
       
   357 	word		LARp[8];
       
   358 
       
   359 #undef	FILTER
       
   360 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
       
   361 # 	define	FILTER 	(* (S->fast			\
       
   362 			   ? Fast_Short_term_analysis_filtering	\
       
   363 		    	   : Short_term_analysis_filtering	))
       
   364 
       
   365 #else
       
   366 # 	define	FILTER	Short_term_analysis_filtering
       
   367 #endif
       
   368 
       
   369 	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
       
   370 
       
   371 	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );
       
   372 	LARp_to_rp( LARp );
       
   373 	FILTER( S, LARp, 13, s);
       
   374 
       
   375 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
       
   376 	LARp_to_rp( LARp );
       
   377 	FILTER( S, LARp, 14, s + 13);
       
   378 
       
   379 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
       
   380 	LARp_to_rp( LARp );
       
   381 	FILTER( S, LARp, 13, s + 27);
       
   382 
       
   383 	Coefficients_40_159( LARpp_j, LARp);
       
   384 	LARp_to_rp( LARp );
       
   385 	FILTER( S, LARp, 120, s + 40);
       
   386 }
       
   387 
       
   388 void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
       
   389 	struct gsm_state * S,
       
   390 
       
   391 	word	* LARcr,	/* received log area ratios [0..7] IN  */
       
   392 	word	* wt,		/* received d [0..159]		   IN  */
       
   393 
       
   394 	word	* s		/* signal   s [0..159]		  OUT  */
       
   395 )
       
   396 {
       
   397 	word		* LARpp_j	= S->LARpp[ S->j     ];
       
   398 	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];
       
   399 
       
   400 	word		LARp[8];
       
   401 
       
   402 #undef	FILTER
       
   403 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
       
   404 
       
   405 # 	define	FILTER 	(* (S->fast			\
       
   406 			   ? Fast_Short_term_synthesis_filtering	\
       
   407 		    	   : Short_term_synthesis_filtering	))
       
   408 #else
       
   409 #	define	FILTER	Short_term_synthesis_filtering
       
   410 #endif
       
   411 
       
   412 	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
       
   413 
       
   414 	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
       
   415 	LARp_to_rp( LARp );
       
   416 	FILTER( S, LARp, 13, wt, s );
       
   417 
       
   418 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
       
   419 	LARp_to_rp( LARp );
       
   420 	FILTER( S, LARp, 14, wt + 13, s + 13 );
       
   421 
       
   422 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
       
   423 	LARp_to_rp( LARp );
       
   424 	FILTER( S, LARp, 13, wt + 27, s + 27 );
       
   425 
       
   426 	Coefficients_40_159( LARpp_j, LARp );
       
   427 	LARp_to_rp( LARp );
       
   428 	FILTER(S, LARp, 120, wt + 40, s + 40);
       
   429 }