jni/gsm/rpe.c
changeset 823 2036ebfaccda
equal deleted inserted replaced
536:537ddd8aa407 823:2036ebfaccda
       
     1 /*
       
     2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
       
     3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
       
     4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
       
     5  */
       
     6 
       
     7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
       
     8 
       
     9 #include <stdio.h>
       
    10 #include <assert.h>
       
    11 
       
    12 #include "private.h"
       
    13 
       
    14 #include "gsm.h"
       
    15 #include "proto.h"
       
    16 
       
    17 /*  4.2.13 .. 4.2.17  RPE ENCODING SECTION
       
    18  */
       
    19 
       
    20 /* 4.2.13 */
       
    21 
       
    22 static void Weighting_filter P2((e, x),
       
    23 	register word	* e,		/* signal [-5..0.39.44]	IN  */
       
    24 	word		* x		/* signal [0..39]	OUT */
       
    25 )
       
    26 /*
       
    27  *  The coefficients of the weighting filter are stored in a table
       
    28  *  (see table 4.4).  The following scaling is used:
       
    29  *
       
    30  *	H[0..10] = integer( real_H[ 0..10] * 8192 ); 
       
    31  */
       
    32 {
       
    33 	/* word			wt[ 50 ]; */
       
    34 
       
    35 	register longword	L_result;
       
    36 	register int		k /* , i */ ;
       
    37 
       
    38 	/*  Initialization of a temporary working array wt[0...49]
       
    39 	 */
       
    40 
       
    41 	/* for (k =  0; k <=  4; k++) wt[k] = 0;
       
    42 	 * for (k =  5; k <= 44; k++) wt[k] = *e++;
       
    43 	 * for (k = 45; k <= 49; k++) wt[k] = 0;
       
    44 	 *
       
    45 	 *  (e[-5..-1] and e[40..44] are allocated by the caller,
       
    46 	 *  are initially zero and are not written anywhere.)
       
    47 	 */
       
    48 	e -= 5;
       
    49 
       
    50 	/*  Compute the signal x[0..39]
       
    51 	 */ 
       
    52 	for (k = 0; k <= 39; k++) {
       
    53 
       
    54 		L_result = 8192 >> 1;
       
    55 
       
    56 		/* for (i = 0; i <= 10; i++) {
       
    57 		 *	L_temp   = GSM_L_MULT( wt[k+i], gsm_H[i] );
       
    58 		 *	L_result = GSM_L_ADD( L_result, L_temp );
       
    59 		 * }
       
    60 		 */
       
    61 
       
    62 #undef	STEP
       
    63 #define	STEP( i, H )	(e[ k + i ] * (longword)H)
       
    64 
       
    65 		/*  Every one of these multiplications is done twice --
       
    66 		 *  but I don't see an elegant way to optimize this. 
       
    67 		 *  Do you?
       
    68 		 */
       
    69 
       
    70 #ifdef	STUPID_COMPILER
       
    71 		L_result += STEP(	0, 	-134 ) ;
       
    72 		L_result += STEP(	1, 	-374 )  ;
       
    73 	               /* + STEP(	2, 	0    )  */
       
    74 		L_result += STEP(	3, 	2054 ) ;
       
    75 		L_result += STEP(	4, 	5741 ) ;
       
    76 		L_result += STEP(	5, 	8192 ) ;
       
    77 		L_result += STEP(	6, 	5741 ) ;
       
    78 		L_result += STEP(	7, 	2054 ) ;
       
    79 	 	       /* + STEP(	8, 	0    )  */
       
    80 		L_result += STEP(	9, 	-374 ) ;
       
    81 		L_result += STEP(	10, 	-134 ) ;
       
    82 #else
       
    83 		L_result +=
       
    84 		  STEP(	0, 	-134 ) 
       
    85 		+ STEP(	1, 	-374 ) 
       
    86 	     /* + STEP(	2, 	0    )  */
       
    87 		+ STEP(	3, 	2054 ) 
       
    88 		+ STEP(	4, 	5741 ) 
       
    89 		+ STEP(	5, 	8192 ) 
       
    90 		+ STEP(	6, 	5741 ) 
       
    91 		+ STEP(	7, 	2054 ) 
       
    92 	     /* + STEP(	8, 	0    )  */
       
    93 		+ STEP(	9, 	-374 ) 
       
    94 		+ STEP(10, 	-134 )
       
    95 		;
       
    96 #endif
       
    97 
       
    98 		/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
       
    99 		 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
       
   100 		 *
       
   101 		 * x[k] = SASR( L_result, 16 );
       
   102 		 */
       
   103 
       
   104 		/* 2 adds vs. >>16 => 14, minus one shift to compensate for
       
   105 		 * those we lost when replacing L_MULT by '*'.
       
   106 		 */
       
   107 
       
   108 		L_result = SASR( L_result, 13 );
       
   109 		x[k] =  (  L_result < MIN_WORD ? MIN_WORD
       
   110 			: (L_result > MAX_WORD ? MAX_WORD : L_result ));
       
   111 	}
       
   112 }
       
   113 
       
   114 /* 4.2.14 */
       
   115 
       
   116 static void RPE_grid_selection P3((x,xM,Mc_out),
       
   117 	word		* x,		/* [0..39]		IN  */ 
       
   118 	word		* xM,		/* [0..12]		OUT */
       
   119 	word		* Mc_out	/*			OUT */
       
   120 )
       
   121 /*
       
   122  *  The signal x[0..39] is used to select the RPE grid which is
       
   123  *  represented by Mc.
       
   124  */
       
   125 {
       
   126 	/* register word	temp1;	*/
       
   127 	register int		/* m, */  i;
       
   128 	register longword	L_result, L_temp;
       
   129 	longword		EM;	/* xxx should be L_EM? */
       
   130 	word			Mc;
       
   131 
       
   132 	longword		L_common_0_3;
       
   133 
       
   134 	EM = 0;
       
   135 	Mc = 0;
       
   136 
       
   137 	/* for (m = 0; m <= 3; m++) {
       
   138 	 *	L_result = 0;
       
   139 	 *
       
   140 	 *
       
   141 	 *	for (i = 0; i <= 12; i++) {
       
   142 	 *
       
   143 	 *		temp1    = SASR( x[m + 3*i], 2 );
       
   144 	 *
       
   145 	 *		assert(temp1 != MIN_WORD);
       
   146 	 *
       
   147 	 *		L_temp   = GSM_L_MULT( temp1, temp1 );
       
   148 	 *		L_result = GSM_L_ADD( L_temp, L_result );
       
   149 	 *	}
       
   150 	 * 
       
   151 	 *	if (L_result > EM) {
       
   152 	 *		Mc = m;
       
   153 	 *		EM = L_result;
       
   154 	 *	}
       
   155 	 * }
       
   156 	 */
       
   157 
       
   158 #undef	STEP
       
   159 #define	STEP( m, i )		L_temp = SASR( x[m + 3 * i], 2 );	\
       
   160 				L_result += L_temp * L_temp;
       
   161 
       
   162 	/* common part of 0 and 3 */
       
   163 
       
   164 	L_result = 0;
       
   165 	STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
       
   166 	STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
       
   167 	STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
       
   168 	L_common_0_3 = L_result;
       
   169 
       
   170 	/* i = 0 */
       
   171 
       
   172 	STEP( 0, 0 );
       
   173 	L_result <<= 1;	/* implicit in L_MULT */
       
   174 	EM = L_result;
       
   175 
       
   176 	/* i = 1 */
       
   177 
       
   178 	L_result = 0;
       
   179 	STEP( 1, 0 );
       
   180 	STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
       
   181 	STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
       
   182 	STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
       
   183 	L_result <<= 1;
       
   184 	if (L_result > EM) {
       
   185 		Mc = 1;
       
   186 	 	EM = L_result;
       
   187 	}
       
   188 
       
   189 	/* i = 2 */
       
   190 
       
   191 	L_result = 0;
       
   192 	STEP( 2, 0 );
       
   193 	STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
       
   194 	STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
       
   195 	STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
       
   196 	L_result <<= 1;
       
   197 	if (L_result > EM) {
       
   198 		Mc = 2;
       
   199 	 	EM = L_result;
       
   200 	}
       
   201 
       
   202 	/* i = 3 */
       
   203 
       
   204 	L_result = L_common_0_3;
       
   205 	STEP( 3, 12 );
       
   206 	L_result <<= 1;
       
   207 	if (L_result > EM) {
       
   208 		Mc = 3;
       
   209 	 	EM = L_result;
       
   210 	}
       
   211 
       
   212 	/**/
       
   213 
       
   214 	/*  Down-sampling by a factor 3 to get the selected xM[0..12]
       
   215 	 *  RPE sequence.
       
   216 	 */
       
   217 	for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
       
   218 	*Mc_out = Mc;
       
   219 }
       
   220 
       
   221 /* 4.12.15 */
       
   222 
       
   223 static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
       
   224 	word		xmaxc,		/* IN 	*/
       
   225 	word		* exp_out,	/* OUT	*/
       
   226 	word		* mant_out )	/* OUT  */
       
   227 {
       
   228 	word	exp, mant;
       
   229 
       
   230 	/* Compute exponent and mantissa of the decoded version of xmaxc
       
   231 	 */
       
   232 
       
   233 	exp = 0;
       
   234 	if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
       
   235 	mant = xmaxc - (exp << 3);
       
   236 
       
   237 	if (mant == 0) {
       
   238 		exp  = -4;
       
   239 		mant = 7;
       
   240 	}
       
   241 	else {
       
   242 		while (mant <= 7) {
       
   243 			mant = mant << 1 | 1;
       
   244 			exp--;
       
   245 		}
       
   246 		mant -= 8;
       
   247 	}
       
   248 
       
   249 	assert( exp  >= -4 && exp <= 6 );
       
   250 	assert( mant >= 0 && mant <= 7 );
       
   251 
       
   252 	*exp_out  = exp;
       
   253 	*mant_out = mant;
       
   254 }
       
   255 
       
   256 static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
       
   257 	word		* xM,		/* [0..12]		IN	*/
       
   258 
       
   259 	word		* xMc,		/* [0..12]		OUT	*/
       
   260 	word		* mant_out,	/* 			OUT	*/
       
   261 	word		* exp_out,	/*			OUT	*/
       
   262 	word		* xmaxc_out	/*			OUT	*/
       
   263 )
       
   264 {
       
   265 	int	i, itest;
       
   266 
       
   267 	word	xmax, xmaxc, temp, temp1, temp2;
       
   268 	word	exp, mant;
       
   269 
       
   270 
       
   271 	/*  Find the maximum absolute value xmax of xM[0..12].
       
   272 	 */
       
   273 
       
   274 	xmax = 0;
       
   275 	for (i = 0; i <= 12; i++) {
       
   276 		temp = xM[i];
       
   277 		temp = GSM_ABS(temp);
       
   278 		if (temp > xmax) xmax = temp;
       
   279 	}
       
   280 
       
   281 	/*  Qantizing and coding of xmax to get xmaxc.
       
   282 	 */
       
   283 
       
   284 	exp   = 0;
       
   285 	temp  = SASR( xmax, 9 );
       
   286 	itest = 0;
       
   287 
       
   288 	for (i = 0; i <= 5; i++) {
       
   289 
       
   290 		itest |= (temp <= 0);
       
   291 		temp = SASR( temp, 1 );
       
   292 
       
   293 		assert(exp <= 5);
       
   294 		if (itest == 0) exp++;		/* exp = add (exp, 1) */
       
   295 	}
       
   296 
       
   297 	assert(exp <= 6 && exp >= 0);
       
   298 	temp = exp + 5;
       
   299 
       
   300 	assert(temp <= 11 && temp >= 0);
       
   301 	xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
       
   302 
       
   303 	/*   Quantizing and coding of the xM[0..12] RPE sequence
       
   304 	 *   to get the xMc[0..12]
       
   305 	 */
       
   306 
       
   307 	APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
       
   308 
       
   309 	/*  This computation uses the fact that the decoded version of xmaxc
       
   310 	 *  can be calculated by using the exponent and the mantissa part of
       
   311 	 *  xmaxc (logarithmic table).
       
   312 	 *  So, this method avoids any division and uses only a scaling
       
   313 	 *  of the RPE samples by a function of the exponent.  A direct 
       
   314 	 *  multiplication by the inverse of the mantissa (NRFAC[0..7]
       
   315 	 *  found in table 4.5) gives the 3 bit coded version xMc[0..12]
       
   316 	 *  of the RPE samples.
       
   317 	 */
       
   318 
       
   319 
       
   320 	/* Direct computation of xMc[0..12] using table 4.5
       
   321 	 */
       
   322 
       
   323 	assert( exp <= 4096 && exp >= -4096);
       
   324 	assert( mant >= 0 && mant <= 7 ); 
       
   325 
       
   326 	temp1 = 6 - exp;		/* normalization by the exponent */
       
   327 	temp2 = gsm_NRFAC[ mant ];  	/* inverse mantissa 		 */
       
   328 
       
   329 	for (i = 0; i <= 12; i++) {
       
   330 
       
   331 		assert(temp1 >= 0 && temp1 < 16);
       
   332 
       
   333 		temp = xM[i] << temp1;
       
   334 		temp = GSM_MULT( temp, temp2 );
       
   335 		temp = SASR(temp, 12);
       
   336 		xMc[i] = temp + 4;		/* see note below */
       
   337 	}
       
   338 
       
   339 	/*  NOTE: This equation is used to make all the xMc[i] positive.
       
   340 	 */
       
   341 
       
   342 	*mant_out  = mant;
       
   343 	*exp_out   = exp;
       
   344 	*xmaxc_out = xmaxc;
       
   345 }
       
   346 
       
   347 /* 4.2.16 */
       
   348 
       
   349 static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
       
   350 	register word	* xMc,	/* [0..12]			IN 	*/
       
   351 	word		mant,
       
   352 	word		exp,
       
   353 	register word	* xMp)	/* [0..12]			OUT 	*/
       
   354 /* 
       
   355  *  This part is for decoding the RPE sequence of coded xMc[0..12]
       
   356  *  samples to obtain the xMp[0..12] array.  Table 4.6 is used to get
       
   357  *  the mantissa of xmaxc (FAC[0..7]).
       
   358  */
       
   359 {
       
   360 	int	i;
       
   361 	word	temp, temp1, temp2, temp3;
       
   362 	longword	ltmp;
       
   363 
       
   364 	assert( mant >= 0 && mant <= 7 ); 
       
   365 
       
   366 	temp1 = gsm_FAC[ mant ];	/* see 4.2-15 for mant */
       
   367 	temp2 = gsm_sub( 6, exp );	/* see 4.2-15 for exp  */
       
   368 	temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
       
   369 
       
   370 	for (i = 13; i--;) {
       
   371 
       
   372 		assert( *xMc <= 7 && *xMc >= 0 ); 	/* 3 bit unsigned */
       
   373 
       
   374 		/* temp = gsm_sub( *xMc++ << 1, 7 ); */
       
   375 		temp = (*xMc++ << 1) - 7;	        /* restore sign   */
       
   376 		assert( temp <= 7 && temp >= -7 ); 	/* 4 bit signed   */
       
   377 
       
   378 		temp <<= 12;				/* 16 bit signed  */
       
   379 		temp = GSM_MULT_R( temp1, temp );
       
   380 		temp = GSM_ADD( temp, temp3 );
       
   381 		*xMp++ = gsm_asr( temp, temp2 );
       
   382 	}
       
   383 }
       
   384 
       
   385 /* 4.2.17 */
       
   386 
       
   387 static void RPE_grid_positioning P3((Mc,xMp,ep),
       
   388 	word		Mc,		/* grid position	IN	*/
       
   389 	register word	* xMp,		/* [0..12]		IN	*/
       
   390 	register word	* ep		/* [0..39]		OUT	*/
       
   391 )
       
   392 /*
       
   393  *  This procedure computes the reconstructed long term residual signal
       
   394  *  ep[0..39] for the LTP analysis filter.  The inputs are the Mc
       
   395  *  which is the grid position selection and the xMp[0..12] decoded
       
   396  *  RPE samples which are upsampled by a factor of 3 by inserting zero
       
   397  *  values.
       
   398  */
       
   399 {
       
   400 	int	i = 13;
       
   401 
       
   402 	assert(0 <= Mc && Mc <= 3);
       
   403 
       
   404         switch (Mc) {
       
   405                 case 3: *ep++ = 0;
       
   406                 case 2:  do {
       
   407                                 *ep++ = 0;
       
   408                 case 1:         *ep++ = 0;
       
   409                 case 0:         *ep++ = *xMp++;
       
   410                          } while (--i);
       
   411         }
       
   412         while (++Mc < 4) *ep++ = 0;
       
   413 
       
   414 	/*
       
   415 
       
   416 	int i, k;
       
   417 	for (k = 0; k <= 39; k++) ep[k] = 0;
       
   418 	for (i = 0; i <= 12; i++) {
       
   419 		ep[ Mc + (3*i) ] = xMp[i];
       
   420 	}
       
   421 	*/
       
   422 }
       
   423 
       
   424 /* 4.2.18 */
       
   425 
       
   426 /*  This procedure adds the reconstructed long term residual signal
       
   427  *  ep[0..39] to the estimated signal dpp[0..39] from the long term
       
   428  *  analysis filter to compute the reconstructed short term residual
       
   429  *  signal dp[-40..-1]; also the reconstructed short term residual
       
   430  *  array dp[-120..-41] is updated.
       
   431  */
       
   432 
       
   433 #if 0	/* Has been inlined in code.c */
       
   434 void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
       
   435 	word	* dpp,		/* [0...39]	IN	*/
       
   436 	word	* ep,		/* [0...39]	IN	*/
       
   437 	word	* dp)		/* [-120...-1]  IN/OUT 	*/
       
   438 {
       
   439 	int 		k;
       
   440 
       
   441 	for (k = 0; k <= 79; k++) 
       
   442 		dp[ -120 + k ] = dp[ -80 + k ];
       
   443 
       
   444 	for (k = 0; k <= 39; k++)
       
   445 		dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
       
   446 }
       
   447 #endif	/* Has been inlined in code.c */
       
   448 
       
   449 void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
       
   450 
       
   451 	struct gsm_state * S,
       
   452 
       
   453 	word	* e,		/* -5..-1][0..39][40..44	IN/OUT  */
       
   454 	word	* xmaxc,	/* 				OUT */
       
   455 	word	* Mc,		/* 			  	OUT */
       
   456 	word	* xMc)		/* [0..12]			OUT */
       
   457 {
       
   458 	word	x[40];
       
   459 	word	xM[13], xMp[13];
       
   460 	word	mant, exp;
       
   461 // Wirlab
       
   462 	(void)S;
       
   463 
       
   464 	
       
   465 
       
   466 	Weighting_filter(e, x);
       
   467 	RPE_grid_selection(x, xM, Mc);
       
   468 
       
   469 	APCM_quantization(	xM, xMc, &mant, &exp, xmaxc);
       
   470 	APCM_inverse_quantization(  xMc,  mant,  exp, xMp);
       
   471 
       
   472 	RPE_grid_positioning( *Mc, xMp, e );
       
   473 
       
   474 }
       
   475 
       
   476 void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
       
   477 	struct gsm_state	* S,
       
   478 
       
   479 	word 		xmaxcr,
       
   480 	word		Mcr,
       
   481 	word		* xMcr,  /* [0..12], 3 bits 		IN	*/
       
   482 	word		* erp	 /* [0..39]			OUT 	*/
       
   483 )
       
   484 {
       
   485 	word	exp, mant;
       
   486 	word	xMp[ 13 ];
       
   487 // Wirlab
       
   488 	(void)S;
       
   489 
       
   490 	
       
   491 
       
   492 	APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
       
   493 	APCM_inverse_quantization( xMcr, mant, exp, xMp );
       
   494 	RPE_grid_positioning( Mcr, xMp, erp );
       
   495 
       
   496 }